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ABSTRACT: We study the problem of counterion condensation for
ellipsoidal macroions, a geometry well-suited for modeling liquid
crystals, anisotropic vesicles, and polymers. We find that the ions
within an ellipsoid’s condensation layer are relatively unrestricted in
their motions, and consequently work to establish a quasi-
equipotential at its surface. This simplifies the application of
Alexander et al.’s procedure, enabling us to obtain accurate analytic
estimates for the critical valence of a general ellipsoid in the weak
screening limit. Interestingly, we find that the critical valence of an
eccentric ellipsoid is always larger than that of the sphere of equal
volume, implying that counterion condensation provides a force
resisting the deformation of spherical macroions. This contrasts with
a recent study of flexible spherical macroions, which observed a
preference for deformation into flattened shapes when considering only linear effects. Our work suggests that the balance of these
competing forces might alter the nature of the transition.

The behavior of weakly charged macroions in biological and
soft materials is well described by the DLVO theory,

which assumes very weak variations of the electrostatic
potential, less than kBT, over scales comparable to the screening
length.1 In this limit, the counterions (or salt ions) within one
screening length of a macroion are not bound to its surface, but
are free to move. This approximation breaks down near highly
charged macroions, where the counterions are bound to the
surface and form a condensation layer.2 The distribution and
behavior of the counterions within this layer are not well-
characterized by mean field analysis. Instead, they are highly
localized, and can be considered part of a macroion-condensed
counterion composite, which moves about as a single entity.2−7

Considering the averaged field of this composite, one can
construct a generalized DLVO theory based on the effective,
renormalized charge.8−10

The degree of charge renormalization depends upon the
shape of a macroion. As explained by Zimm and Le Bret, in the
zero salt concentration limit, no condensation occurs for an
isolated spherical macroion, because the attractive energy
gained through condensation onto such a macroion is always
less than the entropy associated with ion liberation.11 In
contrast, a finite fraction and complete counterion condensa-
tion occurs for cylindrical and planar macroions, respectively, in
the same limit.12,13 Counterion condensation is expected for all
geometries under finite salt concentration conditions.4,14−19

The most drastic, qualitative change occurs for the spherical
geometry, for which a finite fraction of counterions now

condense. This was first explained by Alexander et al., who
obtained the condensation fraction by simply requiring the
surface potential to equate to the free ion entropy.2 These
behaviors are of interest in that various experimental measures
relating to macromolecule solutions, including the osmotic
pressure, structure factor, and compressibility vary with
macroion effective charge.8−10

Studies on charge renormalization have largely focused on
the symmetric geometries mentioned above because they are
the most tractable. However, many physical systems of interest
are not well-modeled by these idealized forms. Examples
include charged liquid crystals, natural clay particles,20,21 short
polyelectrolyte chains and bundles,22 and emulsions or vesicles
of lipids characterized by high-anisotropy. The condensation
characteristics of these intermediate geometries have not yet
been mapped out. Further, these are not readily inferred from
the symmetric geometry results, given the fact that these each
differ qualitatively from one another. In this paper, we study the
effective charge of a general ellipsoidal macroion in the low salt
limit.
Quasi-equipotential development: Within the framework of
condensation theory, the degree of counterion condensation is
related to a macroion’s surface potential.2 Unfortunately, this
value is often not uniquely defined for nonuniform geometries.
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One condition where this complication is avoided is provided
by the high salt limit:3 In this case, all geometries basically
resemble the planar case, because screening occurs locally, over
length scales much smaller than those characterizing surface
curvature. This argument is intuitive for κa ≫ 1, with κ the
inverse Debye length and a the smallest macroion length scale,
but Trizac et al. found that it actually holds reasonably well for
all κa ≳ 1.3

Here, we study ellipsoids in the κa ≲ 1 limit, where the
locally planar approximation3 does not hold. Nevertheless, we
suggest that an equipotential surface can also develop in this
limit, but for a different reason. In this case, at high bare
macroion charge, significant counterion condensation occurs.
At low ion density, these condensed ions will be strongly
constrained in their motions along the surface normal direction,
but relatively unrestricted in motions parallel to the surface.
With sufficient mobile charge at the surface, the solution should
resemble that for a conductor, resulting in a quasi-equipotential
at the macroion surface.
To confirm that the ideas above hold, we have carried out

various simulations of uniformly charged ellipsoids, screened by
their counterions in the absence of salt. The simulations were
run with the counterions constrained to sit within a spherical

volume 100× larger than the ellipsoids, which were placed at
the centers of these volumes. In Figure 1a,b, we plot two
surface potential curves for one example counterion-screened
ellipsoid as a function of the polar angle. The potential in (a) is
that due to the bare charge (−1000e total, a large value
corresponding to a surface charge density of about −0.8 e/nm2,
guaranteeing significant condensation) of the macroion alone,
while that in (b) is the total potential, which is the sum of the
terms coming from the bare macroion and counterions
combined. The potential from the bare surface is maximized
at the equator and minimized at the poles. This maximum
potential difference between these values is sizable, about 1kBT.
In contrast, the maximum potential difference observed in the
total surface potential plot is only about 0.05kBT, 20× smaller:
The condensed ions have distributed themselves so as to nearly
cancel out all potential variations at the surface, as expected.
There is a small oscillation in potential variation which
probably is associated with finite counterion size effects. The
plots in Figure 1c,d demonstrate that these ideas hold quite
generally. Here, we plot the maximum differences of the bare
and total surface potentials against ellipsoid aspect ratio, at fixed
volume, the volume is fixed to be that of a sphere of radius 10
and 100 nm in (c) and (d), respectively. We plot these results

Figure 1. Potential (in kBT) from the (a) prolate ellipsoidal macroion (aspect ratio 1:3) and (b) total charges are plotted as a function of polar angle,
θ. (c, d) Maximum difference of potential of the total charges and that from the macroion are presented with respect to the aspect ratio. ϕv (volume
fraction) is 0.01, and the volume of the ellipse is (c) 4π103 nm3 (filled symbols) and 4π1003 nm3 (hollow symbols) when Z = −5000e. (d) Maximum
potential difference of the macroion (filled symbols) and total charges (hollow symbols) for various macroion charge are plotted at volume 4π1003

nm3.
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for three different bare surface charge values. In all cases, the
maximum difference is always significantly reduced in the total
potential, relative to that of the bare potential. Further, this
total maximum difference is never significantly larger than 1kBT,
implying that the condensed ions are able to access the full
surface through thermal excitations. In summary, we see that
small potential variations can persist after counterion
condensation has set in, but the variations are always weak
relative to those associated with the bare surface charge.
Critical charge estimates: Having confirmed that counterion
condensation results in a nearly uniform surface potential for
highly charged ellipsoids, we now turn to the application of
Alexander et al.’s procedure for estimating their critical valence.
To estimate ellipsoid surface potentials, we will be making use
of the Laplace approximation, equivalent to assuming no
screening outside of condensation effects. This approximation
will work well at small values of κa, since in this limit, the 1/r
decay will significantly damp the potential of the macroion on
scales shorter than the screening length. There are two cases to
consider, prolate (extended) and oblate (flattened) ellipsoids.
Prolate ellipsoids: An example prolate ellipsoid is shown in
inset of Figure 2a. The Laplacian separates in the coordinates
(σ, τ, ϕ), where |r1| + |r2| ≡ 2fσ, |r1| − |r2| ≡ 2fτ, and ϕ is the
azimuthal angle; here, the |ri| are the distances to the ellipsoid’s
focal points and f is its focal length (see figure). In these
coordinates, the surface potential is
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where ϵ ≡ ((2f)/(L)) is the ellipsoid eccentricity (see
Supporting Information (SI) for derivation). We note that
the ellipsoid converges to the spherical limit as ϵ → 0. Setting
the chemical potential of the free, z-valence counterions (μ = kB
T log c) equal to the potential of the ions bound to the surface,
we obtain for the critical valence,
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This equation is actually an implicit expression for Z*, since c is
a function of both Z* and the volume of the cell in which the
ellipsoid sits. We provide some numerical solutions to this
equation below, and compare to critical valence values returned
by simulations.

It is interesting to consider the limiting behaviors of 2. We
consider first the nearly spherical limit: If the eccentricity is not
too close to 1, it turns out that the potential 1 is nearly equal to
that of a sphere charged to Q with radius given by the
arithmetic mean of the three semiaxes of the ellipsoid, a ≡ (1/
3)(a + a + L/2) . That is,
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̅

= ×
+ − ϵ⎡⎣ ⎤⎦( )

Q
Da

Q
Da

3

2 1/ 1 2
(3)

With this approximation, the critical valence goes to

* ≈ − ̅Z
a

zl
clog

B (4)

This agrees formally with 2 only to order ϵ2. Nevertheless, as
shown in Figure 2a, eq 4 is within 1% error for all ϵ ≲ 0.83 and
within 10% error for all values of ϵ ≲ 0.98. These values
correspond to approximate aspect ratios of 2:1 and 5:1,
respectively. As the aspect ratio goes above this value, their ratio
raises sharply, diverging logarithmically in the ϵ → 1 limit. We
discuss this elongated limit in the SI, where we show how to
recover Manning’s result for the critical valence of a line charge
using eq 2.
Oblate ellipsoids: An oblate ellipsoid is one whose two largest
semiaxes are equal in length. An example is shown in the inset
of Figure 2b. A calculation similar to that used in the prolate
case, but carried out in oblate spheroidal coordinates,23 gives
the following Laplace approximation to the surface potential
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The corresponding critical valence is

* = − ϵ

− ϵ ϵ − ϵ
×

− ( )
Z

h
zl

c
1 tan / 1

log
2 1 2 B

(6)

We now consider the spherical approximation to the oblate
case, considering a sphere of charge Q and radius h ≡ (1/3)(2R
+ h) . This approximates the surface potential as

ϕ ≈
̅

Q
Dh (7)

Figure 2. (a) Ratio of the exact prolate and spherical approximate potentials versus eccentricity. An example prolate ellipsoid of length L and radius a
is presented in inset. (b) Ratio of 5 and 7 vs ϵ. An example oblate ellipsoid of radius R and height h is presented in inset.
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In Figure 2b, we plot the ratio of eqs 5 and 7. This peaks at a
value of approximately 1.05 at ϵ = 1, where the prefactors both
approach zero. The plot shows that the spherical approximation
works quite well for all ϵ given an oblate ellipsoid. We recover
the familiar planar result in the limit h → 0 (details in SI).
Comparison with numerical results: We now turn to simulation
checks of the critical valence estimates derived in the previous
sections (Methods are detailed in the SI). In Figure 3a,b, the
effective charge of various oblate and prolate ellipsoids,
screened by their counterions only, are displayed as a function
of bare surface valence Z. The colored, horizontal lines shown
are our Laplace approximation critical valence estimates,
obtained by numerically solving eq 2. The points shown were
obtained from our simulations using the Diehl method,6 and
the solid, black curve shown was obtained using the Alexander
et al. procedure for a spherical macroion. Their consistency
confirms that the condensation fraction is fairly well-defined,
and that numerical estimates of this quantity are largely
insensitive to which particular procedure is used. At large
valence, Zeff appears to converge to a limiting value, Z* (to be
precise, it must continue to vary weakly, logarithmically, with
Z). The limiting Z* values agree very well with our analytic
estimates, confirming the accuracy of the equipotential/Laplace
approximation approach.
Interestingly, Zeff is almost independent of aspect ratio until

Z ≃ 2000 e. At higher valence, Zeff grows with ellipsoid aspect
ratio. In other words, fewer ions condense for more asymmetric
ellipsoids. This is easily understood given the results of the
previous sections, where we found that the spherical
approximation works well for ellipsoids of low to moderate
eccentricity: In these limits, the critical valence of an ellipsoid is
linearly proportional to its mean-axial length, a value that
increases with eccentricity when its volume is held fixed (for
intuition, consider the arithmetic-geometric mean inequality).
It is important to point out that these observations do not
contradict known Zimm and Le Bret behavior results, which
predict zero condensation for charged spheres, but fractional
and full condensation for charged cylinders and planes,
respectively. The reason is that the plots shown here are in
terms of Z: At fixed Z, both elongated planes and cylinders end
up having zero charge density, and so no condensate. This is
explicit in Manning’s formula for the cylindrical case. For
planes, this follows from (6) of the SI.
It is interesting to relate the observations above to the

stability of a highly charged spherical macroion. As we have
seen, if a spherical macroion is deformed into an eccentric
ellipsoidal geometry of equal volume, its critical valence will

increase. The release of counterions will generate an effective
force that serves to stabilize the spherical geometry: A
counterion will bind to a macroion only when its electrostatic
energy benefit exceeds its entropy loss. Thus, a reduction in
condensation implies a net increase in the free energy of the
ions released. Interestingly, a recent simulation study has found
that other electrostatic effects can drive a flexible charged
macroion through a shape transition at low salt, away from the
spherical geometry and into a dimpled shape, similar to those of
blood cells.24 It would be interesting to consider extending this
prior analysis to see whether the inclusion of condensation
effects can significantly modify the nature of the transition.
In Figure 3c, we present simulation results relating to the

dependence of an ellipsoid’s critical valence on added
monovalent salt concentration. At low c and large V, it must
increase, as one transitions from Zimm-Lebret to finite c
behavior. However, as we see here, at finite volumes, Z*
increases with c. The reason is that a larger salt concentration
results in a shorter Debye length. Because of this, the surface
potential is reduced, lessening the driving force for con-
densation and, also, simultaneously weakening the interaction
between macroions, as one would generally expect.
Discussion: We have found that the counterions in the
condensation layer generate a quasi-equipotential surface near
highly charged macroions. Here, we exploited this observation,
combining the equipotential surface approximation with the
Alexander et al. procedure to obtain accurate estimates for a
general ellipsoid’s critical valence. Interestingly, we found that
the spherical result often provides a good approximation, with
spherical radius set to the ellipsoid’s mean semiaxial length.
This implies that counterion condensation should decrease
when a spherical macroion is deformed to other shapes of equal
volume, providing a stabilizing force for the spherical geometry.
It would be a simple matter to extend the results derived here

to the moderate salt regime, where the screening length
becomes comparable to the macromolecule’s size. In this case,
one need only apply the Debye−Hückel approximation to
estimate surface potentials, rather than the Laplace approx-
imation, which we have made use of here for simplicity’s sake.
Series expansions to the Debye−Hückel equation exists for
ellipsoidal, constant surface potential geometries.25 It would
also be interesting to study whether the quasi-equipotential
approximation holds for more general geometries.

Figure 3. Effective charge of ellipsoidal macroions is presented. The lines “theory sphere” are obtained by the process in ref,2 and points are from the
numerical simulation. The aspect ratios of the ellipsoids are 1:1, 1:2, 1:3, and 1:4, respectively, for (a) oblate (b) prolate at ϕv = 0.001. The volume of
the ellipse is (4π/3)(100)3 nm3 (c) The salt concentration is varied; ϵ = 0.94, Z = 1000, ϕv = 0.01, and the volume is (4π/3)(100)3 nm3.
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